Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
Eur J Pharmacol ; 972: 176550, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570081

RESUMO

INTRODUCTION: Hyoscine butylbromide (HBB) is one of the most used antispasmodics in clinical practice. Recent translational consensus has demonstrated a similarity between human colonic motor patterns studied ex vivo and in vivo, suggesting ex vivo can predict in vivo results. It is unclear whether the mechanism of action of antispasmodics can predict different use in clinical practice. The aim of the present study is to bridge this gap dissecting HBB's role in excitatory and inhibitory neural pathways. METHODS: 309 colon samples from 48 patients were studied in muscle bath experiments. HBB was tested on: 1-spontaneous phasic contractions (SPCs); 2-carbachol-induced contractility; electrical field stimulation (EFS)-induced selective stimulation of 3-excitatory and 4-inhibitory pathways and 5- SPCs and EFS-induced contractions enhanced by neostigmine. Atropine, AF-DX116 (M2 blocker) and DAU-5884 (M3 blocker) were used as comparators. RESULTS: In the presence of tetrodotoxin (TTX), HBB and atropine 1 µM reduced SPCs. HBB and atropine concentration-dependently reduced carbachol- and EFS-induced contractions. Inhibitory effects of DAU-5884 on EFS-induced contractions were more potent than of AF-DX116. HBB did not affect the off-response associated to neural inhibitory responses. Neostigmine enhanced both SPCs and EFS-induced contractions. In the presence of TTX and ω-conotoxin (GVIA), neostigmine still enhanced SPCs. Addition of HBB and atropine reduced these responses. CONCLUSIONS: This study demonstrates that HBB inhibits neural cholinergic contractions associated to muscarinic (mainly M3) receptors. HBB has a potential role in reducing colonic spasm induced by the release of acetylcholine from enteric motor neurons and from an atypical source including a potential non-neuronal origin.

2.
Int J Neurosci ; : 1-28, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626288

RESUMO

Alzheimer disease (AD) is one of the most challenging and prevalent neurodegenerative disorder globally with a rising prevalence, characterized by progressive cognitive decline, memory loss, and behavioural changes. Current research aims to determine the nootropic and anti-amnesic effect of Empagliflozin (EMPA) against scopolamine-induced amnesia in rats, by modulating the cholinergic and N-Methyl D-Aspartate (NMDA) receptors. Rats were treated once daily with an EMPA (5 and 10 mg/kg) and donepezil (2.5 mg/kg) for successive 26 days. During the final 13 days of treatment, a daily injection of scopolamine (1 mg/kg) was administered to induce cognitive deficits. EMPA was found to be significantly reduce escape latency, increase time spent in the target quadrant, and enhanced the number of target zone crossings in the Morris water maze (MWM) test, indicating improved spatial memory. Moreover, EMPA increased the recognition index and the number of spontaneous alternations in the novel object recognition (NOR) and Y-maze tests, respectively, suggesting enhanced memory. Additionally, doses of EMPA (5 mg/kg, 10 mg/kg) exhibited memory-enhancing effects even in the absence of scopolamine-induced impairment. Biochemical analysis revealed that EMPA elevated the levels of glutathione (GSH), a potent antioxidant, while decreasing lipid peroxidation (LPO) activity and increasing catalase (CAT) levels, indicating its antioxidative properties. Interestingly molecular docking studies revealed that EMPA fit perfectly in the active sites of M1 muscarinic acetylcholine (mACh) and NMDA receptors. These results indicated that the nootropic and antiamnesic effect of EMPA is medicated via M1 and NMDA receptors and might be a pertinent solution for the AD.

3.
J Alzheimers Dis ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38489175

RESUMO

Background: The cholinergic neuronal loss in the basal forebrain and increasing brain oxidative stress are one of the main features of the brain suffering from Alzheimer's disease. Marrubium vulgare (M. vulgare), commonly known as 'white horehound,' possesses a variety of valuable properties, such as antioxidative, anti-inflammatory, and antidiabetic activities. Moreover, it possesses neuromodulatory properties that could potentially impact short-term memory functions. Objective: The present study was undertaken to investigate the preventive effects of water M. vulgare extract on working memory, cholinergic neurotransmission, and oxidative stress in rats with scopolamine (Sco)-induced dementia. Methods: Male Wistar rats (200-250 g) were divided into four experimental groups. The plant extract was administered orally for 21 days, and Sco (2 mg/kg) was administered intraperitoneally for 11 consecutive days. The behavioral performance of the animals was evaluated by the T-maze test. The effect of the extract on acetylcholinesterase (AChE) activity and antioxidant status in cortex and hippocampus were also monitored. Results: Our experimental data revealed that treatment with M. vulgare significantly increased the percentage of correct choices of rats with Sco-induced dementia in the T maze test (by 38%, p < 0.05). Additionally, it reduced AChE activity in the hippocampus (by 20%, p < 0.05) and alleviated oxidative stress induced by Sco, particularly in the cortex. Conclusions: M. vulgare water extract demonstrated working memory preserving effect in rats with Sco-induced dementia, AChE inhibitory activity and in vivo antioxidant potential, and deserve further attention.

4.
Lab Anim Res ; 40(1): 9, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468315

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most common form of progressive dementia in the elderly, is a chronic neurological disorder that decreases cognitive ability. Although the underlying cause of AD is yet unknown, oxidative stress and brain acetylcholine shortage are the key pathogenic causes. RESULTS: The current study shows that these derivatives have the potential to improve memory in mice by inhibiting scopolamine-induced acetylcholinesterase activity, oxidative and nitrosative stress, and improving locomotor activity and muscle grip strength in the rota rod test. When compared to the illness control, the memory-enhancing potential of novel N-benzyl pyridine-2-one derivatives was highly significant (P < 0.0001). CONCLUSIONS: The observed memory ameliorating effect of novel N-benzyl pyridine-2-one makes them as a a good choice for treatment of individuals with cognitive impairment.

5.
Arch Craniofac Surg ; 25(1): 44-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38461828

RESUMO

Recurrent parotid sialocele is rare and challenging to treat. Treatment options are limited for cases of parotid sialocele that recur despite ductal ligation. This case study presents a patient who underwent wide excision of the right buccal mucosa due to squamous cell carcinoma. During the wide excision, a segment of the parotid duct was excised, and ductal ligation was performed to prevent the occurrence of a sialocele, followed by reconstruction using a folded anterolateral thigh free flap. Twenty-two days after surgery, parotid sialocele occurred despite the initial ductal ligation and subsequent ductal ligation was performed; however, the sialocele recurred. As an alternative therapeutic option, a transdermal scopolamine patch was applied for 3 weeks, with one patch used every 3 days. The results were encouraging, with complete resolution of the sialocele. A transdermal scopolamine offers a noninvasive, convenient method of treating parotid sialocele with minimal side effects. The successful outcome of this case suggests that a transdermal scopolamine can be an effective therapeutic option for recurrent parotid sialocele in conjunction with surgical treatment.

6.
Toxicol Lett ; 394: 128-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428545

RESUMO

The Göttingen minipig is fast becoming the standard for assessing dermal chemical hazards because, like most swine, its skin is predictive of human skin response and because this strain's smaller size makes laboratory manipulations and husbandry easier. Unfortunately, standard behavioral tests and apparatus have not been developed for behavioral assessments of this swine strain. Indeed, computer-controlled automated behavioral testing procedures are much needed. The present research advanced this goal by producing a home-cage behavioral testing system that could accommodate minipigs of various sizes (ages). An aluminum frame housed three levers for recording operant responses, and LEDs above and below each lever served as discriminative stimuli. A commercially available food pellet dispenser was attached to a specialized pellet receptacle capable of measuring pellet retrieval. Two behavioral tests were selected and adapted from our commonly used non-human primate behavioral assessments: delayed match-to-sample (a memory test) and temporal response differentiation (a time-estimation test). Minipigs were capable of learning both tests and attaining stable performance. Next, scopolamine was used to validate the sensitivity of the behavioral tests for gauging behavioral perturbations in this swine strain. Scopolamine dose-effect functions were comparable to those observed in other species, including non-human primates, wherein 37.5 µg/kg of scopolamine (administered intramuscularly) reduced responding approximately 50%. Thus, we were successful in developing the apparatus and automated operant behavioral tests necessary to characterize drug safety in this swine strain. This capability will be valuable for characterizing chemical agent toxicity as well as the safety and efficacy of medical countermeasures.


Assuntos
Escala de Avaliação Comportamental , Pele , Suínos , Animais , Porco Miniatura , Aprendizagem , Escopolamina/toxicidade
7.
J Pediatr Pharmacol Ther ; 29(1): 6-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332959

RESUMO

Sialorrhea, defined as an excess flow of saliva or excessive secretions, is common in patients with cerebral palsy and other neurologic disorders and is associated with clinical complications such as increased risk of local skin reactions, infections, aspiration, pneumonia, and dehydration. Upon failure of non-pharmacologic measures, clinicians have several noninvasive pharmacologic options available to manage sialorrhea. This review of the literature provides detailed descriptions of medications used, efficacy, safety, and practical considerations for use of non-injectable pharmacologic agents. The literature search included published -human studies in the English language in PubMed and Google Scholar from 1997 to 2022. Relevant citations within articles were also screened. A total of 15 studies representing 719 pediatric patients were included. Glycopyrrolate, atropine, scopolamine, and trihexyphenidyl all have a potential role for sialorrhea management in children; however, glycopyrrolate remains the most studied option with 374 (n = 52.0%) of the 719 patients included in the systematic review receiving this medication. Overall, glycopyrrolate showed similar efficacy but higher tolerability than its comparators in 2 comparative studies and is often considered the first-line agent. Patient-specific (age, route of administration) and medication-specific (dosage formulation, medication strength) considerations must be weighed when initiating a new therapy or switching to another medication upon treatment failure. Owing to the high propensity of adverse events with all agents, clinicians should consider initiating doses at the lower end of the dosage range, as previous studies have noted a dose-dependent relationship.

8.
Physiol Behav ; 277: 114494, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360390

RESUMO

Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.


Assuntos
Quercetina , Escopolamina , Ratos , Masculino , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Wistar , Escopolamina/toxicidade , Antioxidantes/farmacologia , Estresse Oxidativo , Aprendizagem em Labirinto
9.
Artigo em Inglês | MEDLINE | ID: mdl-38310573

RESUMO

BACKGROUND: To a certain extent, traditional Chinese medicine (TCM)-based anesthesia has replaced opiate administration in recent years. Preliminary drug screening has revealed that scopolamine may affect breast cancer (BC) metastasis by an unknown mechanism. METHODS: Network pharmacology, bioinformatics, and protein-protein interaction (PPI) topological analysis were implemented to identify the core genes linking scopolamine and BC. The core genes were then subjected to gene expression profiling interactive analysis (GEPIA). The top ten pathways were detected by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The impact of immune infiltration on the core gene difference and survival analyses was then determined. Molecular docking was then performed on the core genes and the main active components. RESULTS: Protein kinase 1 (AKT1), epidermal growth factor receptor (EGFR), heat shock protein 90 alpha class A (HSP90AA1), caspase 3 (CASP3), and estrogen receptor 1 (ESR1) were the key genes in the interaction between scopolamine and BC cells. The KEGG enrichment analysis disclosed that the top ten pathways significantly associated with the scopolamine response in BC included "protein glycosylation," "phosphoinositide 3-kinase (PI3K)-Akt signaling," "mitogen- activated protein kinase (MAPK) signaling" and others. The AKT1, EGFR, and especially the HSP90AA1 expression levels were correlated with survival in patients with BC. Immune infiltration also influenced the survival outcome. Molecular docking demonstrated that scopolamine bound and formed stable complexes with the protein products of all five aforementioned genes. CONCLUSION: Scopolamine has multiple targets regulating BC cell function and may increase the risk of metastasis during treatment. Therefore, it should be preoperatively administered with caution to patients with BC.

10.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338372

RESUMO

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Assuntos
Benzamidas , Disfunção Cognitiva , Maleato de Dizocilpina , Compostos Nitrosos , Pirazóis , Piridinas , Sulfonamidas , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Óxido Nítrico/farmacologia , Escopolamina/farmacologia , Óxido Nítrico Sintase Tipo III , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Regulação Alostérica
11.
Pharmacol Res Perspect ; 12(1): e1169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38258916

RESUMO

Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Ligamento Periodontal , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese , Células-Tronco , Escopolamina
12.
Appl Microsc ; 54(1): 2, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253782

RESUMO

The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.

13.
Aging (Albany NY) ; 16(3): 2385-2397, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284892

RESUMO

Evodia lepta Merr. (Evodia lepta) is a well-known traditional Chinese medicine, which has been widely used in herbal tea. We previously reported that the coumarin compounds from the root of Evodia lepta exhibited neuroprotective effects. However, whether Evodia lepta could inhibit NLRP3 inflammasome in dementia was still unknown. In this study, the components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. We employed a scopolamine-treated mouse model. Evodia lepta extract (10 or 20 mg/kg) and donepezil were treated by gavage once a day for 14 consecutive days. Following the behavioral tests, oxidative stress levels were measured. Then, Western blot and immunofluorescence analysis were used to evaluate the expressions of NLRP3 inflammasome. 14 major components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. The results of Morris water maze, object recognition task and open field test indicated that Evodia lepta extract could ameliorate cognitive impairment in scopolamine-treated mice. Evodia lepta extract improved cholinergic system. Moreover, Evodia lepta extract improved the expressions of PSD95 and BDNF. Evodia lepta extract suppressed neuronal oxidative stress and apoptosis. In addition, Evodia lepta extract inhibited NLRP3 inflammasome in the hippocampus of scopolamine-treated mice. Evodia lepta extract could protect against cognitive impairment by inhibiting NLRP3 inflammasome in scopolamine-treated mice.


Assuntos
Disfunção Cognitiva , Evodia , Camundongos , Animais , Inflamassomos , Evodia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Escopolamina/toxicidade , Etanol/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
14.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278026

RESUMO

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Assuntos
Doença de Alzheimer , Morfinanos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Neuroimunomodulação , Escopolamina/farmacologia , Inflamação/patologia , Homeostase , Encéfalo/metabolismo , Colinérgicos/farmacologia
15.
Psychopharmacology (Berl) ; 241(5): 947-962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38172238

RESUMO

RATIONALE: The rat cognitive effort task (rCET), a rodent model of cognitive rather than physical effort, requires animals to choose between an easy or hard visuospatial discrimination, with a correct hard choice more highly rewarded. Like in humans, there is stable individual variation in choice behavior. In previous reports, animals were divided into two groups-workers and slackers-based on their mean preference for the harder option. Although these groups differed in their response to pharmacological challenges, the rationale for using this criterion for grouping was not robust. METHODS: We collated experimental data from multiple cohorts of male and female rats performing the rCET and used a model-based framework combining drift diffusion modeling with cluster analysis to identify the decision-making processes underlying variation in choice behavior. RESULTS: We verified that workers and slackers are statistically different groups but also found distinct intra-group profiles. These subgroups exhibited dissociable performance during the attentional phase, linked to distinct decision-making profiles during choice. Reanalysis of previous pharmacology data using this model-based framework showed that serotonergic drug effects were explained by changes in decision boundaries and non-decision times, while scopolamine's effects were driven by changes in decision starting points and rates of evidence accumulation. CONCLUSIONS: Modeling revealed the decision-making processes that are associated with cognitive effort costs, and how these differ across individuals. Reanalysis of drug data provided insight into the mechanisms through which different neurotransmitter systems impact cognitively effortful attention and decision-making processes, with relevance to multiple psychiatric disorders.


Assuntos
Cognição , Tomada de Decisões , Humanos , Ratos , Masculino , Feminino , Animais , Tomada de Decisões/fisiologia , Ratos Long-Evans , Atenção , Recompensa , Simulação por Computador
16.
J Ethnopharmacol ; 324: 117416, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37981114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl (DNL), a valued time-honored herb, possesses immune-boosting and age-delaying properties, has been widely used to treat hyperglycemia and neurological diseases, and is probably a potential drug for improving learning and memory. Scopolamine (Scop), an antagonist for muscarinic receptors, potentially impairing intelligence and memory. AIM OF THE STUDY: This investigation aimed to assess the efficacy of DNL in alleviating scopolamine-induced cognitive deficits in mice and its mechanisms. MATERIALS AND METHODS: We utilized the open-field test, novel object recognition test (NOR), and Morris water maze test (MWM) to assess the potential of DNL in ameliorating learning and memory dysfunction caused by scopolamine in mice. Enzyme-linked immunosorbent assay (ELISA) was employed to measure Choline acetyltransferase (ChAT) content and Acetylcholinesterase (AChE) activities in the brain, and oxidative stress-related factors in the serum, including Malondialdehyde (MDA), Superoxide dismutase (SOD), and glutathione (GSH) content. RESULTS: Scopolamine injection significantly reduced the discrimination index of mice in the NOR test and impaired their performance in the MWM test, as demonstrated by longer escape latency, fewer target crossings, and less time spent in the target quadrant in the MWM. After 25 days of administration, DNL increased the discrimination index of the scopolamine-treated mice in the NOR test. DNL reduced the escape latency in the MWM test in the model mice. DNL increased the target crossing number and the percentage of time spent in the target quadrant in the MWM test. ELISA experiments indicated that DNL decreased the AChE activities, increased the ChAT activities, and modulated oxidative stress makers (GSH, SOD, and MDA) in scopolamine-induced mice. CONCLUSIONS: DNL may improve the learning and memory in mice treated with scopolamine, possibly by modulating oxidative stress and impaired cholinergic function.


Assuntos
Dendrobium , Escopolamina , Camundongos , Animais , Acetilcolinesterase/metabolismo , Aprendizagem em Labirinto , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo
17.
J Biochem Mol Toxicol ; 38(1): e23580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961937

RESUMO

Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol ß-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.


Assuntos
Doença de Alzheimer , Sesquiterpenos Monocíclicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Escopolamina/efeitos adversos , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Carbonilação Proteica , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Doença de Alzheimer/induzido quimicamente , Glutationa/metabolismo
18.
Food Chem ; 438: 138010, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37983999

RESUMO

In recent years, the monitoring of tropane alkaloids, specifically hyoscyamine and scopolamine, in food has become a pressing concern. This is due to increasing reports of food contamination with these compounds worldwide, raising awareness about the potential risks associated with their consumption. A novel method is proposed here for the determination of the sum of (+)-hyoscyamine, (-)-hyoscyamine, and (-)-scopolamine in buckwheat-based matrices, using solid-liquid extraction at low temperature and quantification by bidimensional chromatography coupled to tandem mass spectrometry. The validated method presented a linear response in the concentration range of 2.5-15 µg kg-1 (r > 0.99). The precision and accuracy were in the ranges from 0.8 to 11.0 % and from 96 to 103 %, respectively. The limit of quantification (LOQ) was 2.5 µg kg-1. No contamination was found at levels above the LOQ in any of the 18 samples analyzed (buckwheat flour, grains, and gluten-free mix).


Assuntos
Alcaloides , Fagopyrum , Hiosciamina , Alcaloides/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Farinha/análise , Brasil , Temperatura , Tropanos/química , Escopolamina/análise
19.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37814140

RESUMO

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Assuntos
Hyoscyamus , Hyoscyamus/genética , Hyoscyamus/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Rotação , Raízes de Plantas/metabolismo , Tropanos/metabolismo , Tropanos/farmacologia , Expressão Gênica
20.
Metab Brain Dis ; 39(1): 15-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008885

RESUMO

Fish oil has been known for its antioxidant, cardioprotective, anti-inflammatory, and neuroprotective characteristics due to the presence of polyunsaturated fatty acids (PUFAs) that are essential for optimal brain function and mental health. The present study investigated the effect of Carcharhinus Bleekeri (Shark Fish) oil on learning and memory functions in scopolamine-induced amnesia in rats. Locomotor and memory-enhancing activity in scopolamine-induced amnesic rats was investigated by assessing the open field and passive avoidance paradigm. Forty male Albino mice were divided into 4 equal groups (n = 10) as bellow: 1 - control (received 0.9% saline), 2 - SCOP (received scopolamine 2 mg/kg for 21 days), 3 - SCOP + SFO (received scopolamine and fish oil 5 mg/kg/ day for 21 days), 4 - SCOP + Donepezil groups (received 3 mg/kg/day for 21 days). SFO produced significant (P < 0.01) locomotor and memory-enhancing activities in open-field and passive avoidance paradigm models. Additionally, SFO restored the Acetylcholine (ACh) concentration in the hippocampus (p < 0.05) and remarkably prevented the degradation of monoamines. Histology of brain tissue showed marked cellular distortion in the scopolamine-treated group, while the SFO treatment restored distortion in the brain's hippocampus region. These results suggest that the SFO significantly ameliorates scopolamine-induced spatial memory impairment by attenuating the ACh and monoamine concentrations in the rat's hippocampus.


Assuntos
Óleos de Peixe , Escopolamina , Animais , Masculino , Camundongos , Ratos , Acetilcolina/farmacologia , Óleos de Peixe/farmacologia , Hipocampo/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...